聊聊数据分析的价值 | 四级价值阶梯,你在哪一层?

发布时间:2021/04/19 00:00      浏览:253
作者:Sven
来源:一个数据人的自留地

最近和身边一些朋友交流,有的小伙伴们对数据分析的发展方向和实际价值有一定疑惑,我们今天一起来聊聊数据分析的价值和发展方向。


01 价值拆分


就数据分析这四个字来说,我们如果将之拆分为 数据 + 分析,就能较好的理解数据分析在干啥了。


通过信息的采集/收集,整合,处理,提炼,得到相应的结论,使得我们能够更清晰的认知事物,从而为决策提供帮助,使得做出的决策更明智。


前半段,从收集信息到得到结论,是具体的工作内容。


我们提数据,做报表,这些都是信息的收集,信息的处理,信息的整合。


而给结论,是我们需要输出的对这些信息的描述。


也就是我们需要告诉别人这些信息到底是啥。


因为信息多,我们才要整理,因为整理了,我们才需要提炼有用信息。


后半段,从认知事物到决策,是工作的目的。


我们呈现了高度汇总的信息,这个是个事实。呈现事实本身是没有用的,通过事实给出的观点才是有用的。


一切的数据处理,内容总结,都是为这个观点服务的。


就如同论文,我们长篇大论写了一堆数据,描述了一堆事实,最后不给一个论点,你说的这些数据和事实,都是无用的。


所以说,数据分析应该分析在前,数据在后。因为核心目的,是为结论负责,而这个结论又是为后续的决策负责。


也就是说,我们在做数据分析时,第一个阶段是整理数据,处理信息;第二个阶段是总结信息,呈现事实;第三个阶段是基于事实,给出观点。


很多朋友说天天当成工具人,那就是处于第一个阶段,我们总在整理数据,提供数据。


但是我们反过来可以想想,需求方用这个数据干什么,目的是什么,那么我们是不是就能够深入到第二个阶段,甚至第三个阶段了。


我们仅天天抱怨问题,没有自己去主动解决问题,就等着业务方去解决。希望业务哪天提一个业务分析需求,就可以大展身手了。


不要将这种改变现状的想法放到别人身上,你自己都不愿主动改变,为啥要期待别人会去改变?!


另说,业务的需求你了解是什么吗?


定性的描述是什么?


定量的描述是什么?


你负责的业务的核心指标是什么,提供的核心服务是什么,从最粗的粒度,到最细的粒度,你了解了什么,等等等等。


这些数据和概念,你能够在不问别人的情况下,直接就说出来吗?


为数据分析一定是源于业务的,我们如果连业务都不了解,那么就需要先沉下心来了解业务。


如果我们对业务已经足够了解了,那么来了一个需求,我们就需要去关注这个需求本身了。不要仅关注需求是什么,咋完成。这种是最基本的,完成一个需求是表现,解决一个问题才是本质。


通过业务方的需求,去总结他们需要解决的问题,看看这些问题,我们能够哪些从他们不知道的角度,提供哪些有用的数据,基于这些数据,我们能够呈现什么信息和观点,从而帮助他们解决问题。


从业务出发,又高于业务,最后反哺业务。


02 价值进阶


总的来说,数据其实只是一个决策的切入点,我们需要从中拿到信息,才是数据的价值。因为数据能表达得更直观,全面。


刚刚我们也讲了数据分析的三个阶段,如果我们再深入一步,基于最后提供观点的目的(帮助业务做决策),我们能做什么呢?


提供决策的选择。


也就是说,我们有了观点,还可以将观点具体落实。


即我们不仅提供观点,还提供观点之后的具体落地方案及可能的收益,以及如果有负面影响,我们如何cover。


这个就是第四个阶段,结合观点,落地方案。


到了这一步,数据分析的价值才被非常非常好的体验出来。


我们提供整合了信息,概述了事实,表达了观点,给出可落地的方案及相关评估。


业务只需要去决策,落地哪种方案即可。


很多时候,我们可能觉得没有啥观点,或者没有啥观点,这是肯定的,因为所有东西也都是一点一滴积累的,我们可以去学,可以去模仿,但是一定要要求自己去给观点。


只有开始做了,才会有提升的空间。


结合我自己的经验,这种走起来会稍微快一些,仅供参考。


就数据分析这个职业来说,数据分析师的工作古代就有了。


比如古代的参谋,军事家,政治家等等。


他们会基于敌我人数,粮草数量,兵马数量,地区各方面经济指标等进行军事和政治决策,这个其实就是在进行“数据分析师”的工作。


比如大家耳熟能详的诸葛亮,他就是一个非常厉害的“数据分析师”。


到了近现代,随着科学计数的发展,我们的各项职业和技能都越来越精细化和专业化,各行各业也都在数字化落地,所以我们现在需要更专业的编程计数,数据分析方法论。


因为以往粗放的、不专业的、笼统的、基于经验主义的决策方式,已经无法满足很多发展的越来越精细和完备的企业的需求,所以我们也需要更加专业、准确、精细的数据分析,来为决策提供更先进的依据。


但是讲回来,我们是利用工具去解决问题,利用方法论去解决问题。


不要陷入到工具和方法论学习中,工具和方法论都是一个过程,大部分数据分析都是要解决业务问题,问题背后的目的是需要我们去深入思考的。


当我们能够清楚的描述出问题时,基本问题就解决了一半了,所以,了解业务很重要。


当然,后期我们如果想要转到技术方向,多学习技术和工具也没问题,毕竟什么事情做到极致都是非常厉害的,就类似“匠人”精神。


03 分析思考


很多时候,我认为数据分析不再是一个职位,一个工作,而是一个思考的方式,或者说技能buff。


因为我们生活中很多时候就在用这个技能,比如定外卖可以算算满减,为了多睡两分钟卡点出门上班,买东西货比三家等等。


这些就是日常生活中我们的“分析”,为什么我们自己在生活中会不由自主的想这些呢,因为我们可以从这些东西中受益。


工作同样,我们也可以用这些主动的技能去思考,业务如何做好,问题如何解决,目标如何达成,相信我们也能有非常多的思路和点子做“数据分析”。


环境是很重要,但是,起码我们得先主动去改变吧。


被动的等分析需求展现自己的价值,何不主动些,去展现自己的能力,体现分析的价值。


不断的沉淀总结,千万不要理所当然的觉得“这个事儿就是这样”。


我们一定要去关注背后的原理,因为表现出来的,或者我们能看到的,都是最表层的,在做需求中多多思考,那些很有价值的点和思路就能找到了。

© 2011~2015 3 北京勺海市场调查有限责任公司 | 京ICP备12031756号 | 京公网安备11010802012285号

电话:北京总部010-58696306,上海OFFICE:021-52285671    总部地址:中国北京朝阳区东三环中路建外SOHO18号楼1506室   技术支持:混沌鸿蒙